【文献解读】KI小鼠模型揭示肿瘤血管新生的新靶标


10月30日,中科院生物化学与细胞生物学研究所周斌研究组在Cell Reports在线发表了最新成果“Apj+ vessels drive tumor growth and represent a tractable therapeutic target”。该研究利用Apj-CreER和Apj-DTRGFP-Luc基因敲入小鼠模型,分别建立皮下肿瘤移植模型、原位肿瘤移植模型、基因缺陷原位肿瘤模型和化合物诱导肿瘤模型,追踪Apj的表达情况,发现Apj可以特异性地标记大部分的肿瘤新生血管。该研究进一步揭示肿瘤恶性增殖与血管新生的关系,进而加深对肿瘤疾病的认识,同时也为靶向肿瘤新生血管的药物研发提供更加坚实的理论基础。

 

图片14.png


南模生物为该研究构建了Apj-CreER和Apj-DTRGFP-Luc基因敲入小鼠模型。

 

研究背景

在各种临床前和临床研究中,抑制或破坏肿瘤血管生成已经成为治疗肿瘤的主要治疗策略之一。但是,目前像血管内皮生长因子(VEGF)这样的用于抑制血管生成的靶标,存在一定的不良脱靶风险,因为它对肿瘤组织和周围正常组织的血管都具有抑制作用。因此,如何靶向病理性新生血管成为迫切需要解决的问题。

 

Apelin是在内皮细胞表面上表达的G蛋白偶联受体Apj的配体。2015年,周斌课题组发现尽管Apelin在发育过程中高度富集内皮细胞,但在成体器官的内皮细胞中显着降低,仅在病理条件下,例如心肌梗塞或肿瘤生长时,内皮细胞中的Apelin增加;而靶向表达Apelin的肿瘤内皮细胞可以有效地限制肿瘤生长。说明Apelin-Apj轴是有潜力的治疗靶点。

 

然而,由于Apelin是分泌肽,在成药性上面临诸多挑战。Apj作为Apelin的受体,在细胞表面表达,对于用小分子拮抗剂靶向治疗相对更加容易。因此,这项研究针对Apj展开,并取得了可喜的结果。

 

小鼠模型

  • Apj-CreER

通过CRISPR/Cas9技术介导同源重组,将CreER表达框替换内源性Apj基因的翻译起始密码子ATG,构建Apj-CreER基因敲入小鼠模型。

图片1.png 

Apj-CreER基因敲入小鼠构建策略

 

  • Apj-DTRGFP-Luc

通过CRISPR/Cas9技术介导同源重组,将DTRGFP和luciferase荧光素酶表达框替换内源性Apj基因的翻译起始密码子ATG,构建Apj-DTRGFP-Luc基因敲入小鼠模型。


图片2.png 

Apj-DTRGFP-Luc基因敲入小鼠构建策略

 

 

研究结果

  • 胚胎阶段Apj在多种组织的血管内皮细胞中表达,但在成年阶段表达减少

Apj-CreER小鼠与R26-GFP(条件性GFP报告基因)小鼠交配获得Apj-CreER; R26-GFP小鼠。他莫昔芬处理以诱导Cre-loxP重组来标记Apj+(GFP)细胞(下图B)。胚胎阶段,Apj在多个组织的血管内皮细胞表达,包括心脏,脑,肺,肝,肠和肾。成年小鼠中,他莫

昔芬处理8-10周龄的Apj-CreER; R26-GFP小鼠,10天后收集组织样品并切片(下图C)。通过对GFP和内皮细胞标记物PECAM的免疫染色发现Apj+细胞与胚胎期相比减少(下图D)。也排除了Apj-CreER的漏表达。说明Apj在发育中的胚胎的血管内皮细胞中特异性表达,并且其表达在成年小鼠中显着降低。

图片3.png 

Figure 1. Apj-CreER Sparsely Labeled Endothelial Cells in Adult Organs. (A) Strategy for generation of Apj-CreER knockin allele. (B) Schematic figure showing genetic lineage tracing strategy. (C) Experimental strategy for tamoxifen induction and tissue collection. (D) Immunostaining for GFP and PECAM on tissue sections.

 

  • Apj在成年小鼠肿瘤血管中高度富集

由于肿瘤微环境高度缺氧,缺氧诱导Apelin/Apj轴驱动的内皮细胞增殖和血管再生,Apelin在缺氧环境下被诱导表达,因此推测Apj在缺氧环境下也可能被上调。在Apj-CreER;R26-GFP小鼠中皮下接种与Matrigel混合的肿瘤细胞系TC-1、Hepa1-6和LLC ,并用他莫昔芬在肿瘤生长期间标记Apj+细胞(下图A),结果发现:在健康组织中很少能检测到Apj-CreER标记的血管内皮细胞(包括心脏、脑、肺和肝)(下图B);相反,在肿瘤组织中,大多数(超过95%)血管内皮细胞均被GFP标记(下图B-E)。



图片4.png 

Figure 2. Apj-CreER Labeled the Majority of Endothelial Cells in Xenograft Tumors, Chemically Induced Tumors, and Spontaneous Tumors. (A) Experimental strategy for tamoxifen induction and tissue collection. (B) Quantification of the percentage of GFP+ endothelial cells in different organs and three xenograft tumor models. Data are mean ± SEM; n = 5. (C–E) Whole-mount fluorescence images of xenograft tumors (left). Immunostaining for GFP and PECAMon tumor sections (right). Boxed regions are magnified in the lower panel. (C) TC-1, (D) Hepa1-6, and (E) LLC.

 

另外通过将肝癌细胞(Hepa1-6)直接注射到Apj-CreER; R26-GFP小鼠的肝脏中建立原位肿瘤模型,二乙基亚硝胺(DEN)诱导建立肝癌模型(下图F-I),MMTV-PyMT转基因诱发乳腺癌模型(下图J-M),都发现肿瘤组织中GFP+血管的百分比显著高于周围健康组织。这些数据说明Apj在成年小鼠肿瘤血管中高度富集。


图片5.png 

Figure 2. Apj-CreER Labeled the Majority of Endothelial Cells in Xenograft Tumors, Chemically Induced Tumors, and Spontaneous Tumors. (F) Experimental strategy for DEN-induced liver tumor model and time schedule for tamoxifen induction and tissue analysis. (G) Whole-mount bright-field and fluorescence images of chemical induced tumor tissues. (H) Immunostaining for GFP and PECAM on sections of tumor tissues in (G). Boxed region is magnified on the right. (I) Quantification of the percentage of GFP+ endothelial cells in normal liver tissues and chemically induced tumors. *p < 0.05. Data are mean ± SEM; n = 5. (J) Experimental strategy for spontaneous mammary gland tumor model using Apj-CreER;R26-GFP;MMTV-PyMT mice and time schedule for tamoxifen induction and tissue analysis. (K) Whole-mount bright-field and fluorescence view of spontaneous tumor tissues. Boxed region is magnified on the right. (L) Immunostaining for GFP and PECAM on sections of tumor tissues in (K). Boxed region is magnified on the right. (M) Quantification of the percentage of GFP+ endothelial cells in normal mammary gland tissues and tumors.

 

  • 缺氧-VEGF信号调节肿瘤中Apj +血管扩张

通过检测组织缺氧和移植肿瘤细胞的增殖情况来分析肿瘤血管中Apj表达上调的机制(下图A)。Hypoxyprobe和GFP染色显示出两个不同的区域:(1)肿瘤周边区域——缺氧程度较低,富含GFP+血管;(2)肿瘤核心区域——高度缺氧且血管新生功能差(下图B)。由于GFP作为遗传谱系示踪的荧光标记,代表Apj曾经表达过,因此Apj+的细胞可能是Apj不表达但GFP仍维持标记的。利用GFP和ESR的免疫染色来显示Apj+细胞中CreER的持续表达,结果发现ESR/Apj荧光信号富集在位于靠近肿瘤核心区域的内皮细胞而不是周边区域(下图C)。体外低氧环境培养人脐静脉内皮细胞(HUVECs),Apj蛋白在缺氧条件下显着增加(下图D-E)。对EdU、GFP和PECAM的免疫染色显示大量GFP+内皮细胞掺入EdU,表明Apj+血管高增殖和血管生成扩张(下图F)。这些数据表明Apj+血管在肿瘤生长期间被募集到缺氧区域,且其中Apj的表达可能受肿瘤缺氧调节。


图片6.png 

Figure 3. Apj Expression Is Controlled by Hypoxia and Is Enriched in Hypoxic Tumor.  (A) Schematic figure showing experimental strategy for induction of EDU and Hypoxyprobe. (B) Immunostaining for GFP and Hypoxyprobe on tumor section. (C) Immunostaining for GFP and ESR on tumor section shows that Apj expression is highly enriched in the region adjacent to tumor core. (D and E) Western blot of Apj protein from HUVECs cultured under normal or hypoxia conditions (D) and quantification of Apj expression (E). *p < 0.05. Data are mean ± SEM; n = 3. (F) Immunostaining for GFP, PECAM, and EdU on tumor section. Arrowheads indicate proliferating endothelial cells marked by Apj.

 

通过两种缺血模型:后肢缺血和心肌梗塞(MI)进一步验证缺氧是否调节Apj表达。在Apj-CreER; R26-GFP成年小鼠中进行股动脉结扎以建立后肢缺血损伤模型并在后肢组织中诱导缺氧环境。结果发现,当组织缺血和/或缺氧时,血管内皮细胞中的Apj表达确实增加了。

 

那么肿瘤组织缺氧环境中Apj+血管扩张的分子机制究竟是什么?是不是通过VEGFA信号来调控的呢?通过将Kdr条件性敲除引入到Apj-CreER;R26-GFP小鼠中(交配获得Apj-CreER;R26-GFP;Kdrfl/fl小鼠),导致VEGFR2表达缺失。荷瘤第3天开始进行他莫昔芬处理,并在10天后采集肿瘤组织样本(下图A)。他莫昔芬诱导Kdr基因敲除,导致Apj+血管内皮细胞中VEGFR2表达缺失(下图B)。在对照组Apj-CreER; R26-GFP; Kdr fl/+小鼠中肿瘤体积显着增加,但Apj-CreER; R26-GFP; Kdrfl/fl小鼠中肿瘤体积没有增加(下图C)。VEGFR2信号缺失的小鼠与其它VEGFR2正常表达的对照组相比,肿瘤体积和肿瘤重量均有显著差异(下图D-F)。Apj-CreER; R26-GFP; Kdrfl/fl小鼠肿瘤中GFP+信号显著减少(下图G),PECAM +血管内皮细胞密度显著降低(下图H和I)。这些数据都证明缺氧调节了Apj的表达,缺氧-VEGF信号控制肿瘤形成中Apj+血管的扩张。


图片7.png 

Figure 4. Expansion of Apj+ Vessels in Tumor Growth Is Regulated by VEGF Signaling. (A and B) Schematic figure showing experimental strategy (A) and working principle for CreER-induced ablation of VEGFR2 (Kdr) gene (B). (C) Quantification of tumor volume (length 3 width2/2 [mm3]) at various times after implantation. *p < 0.05. Data are mean ± SEM; n = 6.  (D) Image of tumors collected from Apj-CreER;R26-GFP;Kdrflox/flox mice or Apj-CreER;R26-GFP;Kdrflox/+ mice treated with tamoxifen. (E and F) Quantification of tumor volume (E) and tumor weight (F) of three different groups as indicated. *p < 0.05. Data are mean ± SEM; n = 6. (G) Whole-mount fluorescence view of GFP+ tumors. Inset is bright-field image. (H) Immunostaining for PECAM on tissue sections. (I) Quantification of vessel number per field (633). *p < 0.05. Data are mean ± SEM; n = 6.

 


  • 靶向Apj+血管的监测和消融

利用新建立的Apj-DTRGFP-Luc基因敲入小鼠模型,可以在体内实时监测肿瘤中的Apj+血管。和之前的结果一致,肾脏、胰腺、心脏和脑等多个器官中的大多数血管内皮细胞仍为GFP阴性(下图B);相反,在肿瘤中的大多数PECAM+内皮细胞中检测到GFP和白喉毒素受体(DTR)表达(下图C),表明肿瘤血管中的Apj表达激活。利用生物发光成像系统,可以在体内通过非侵入的方式实时监测Apj+细胞(下图D)。


图片8.png 

Figure 5. Generation and Characterization of Apj-DTRGFP-Luc Mouse Line. (A) Schematic figure showing strategy for generation of Apj-DTRGFP-Luc allele by homologous recombination using CRISPR/Cas9. (B) Immunostaining for GFP and PECAM on tissue sections of Apj-DTRGFP-Luc mouse organs. (C) Immunostaining for GFP, DTR, and PECAM on tumor section of the same mouse. (D) One minute luminescent images of Apj-DTRGFP-Luc and littermate wild-type mouse after tumor (blue arrows) or Matrigel (white arrows) implantation.


通过两种不同的方法来消融体内Apj+血管,评估Apj+血管内皮细胞死亡是否会影响肿瘤生长,从而判断Apj+血管是否为肿瘤生长所必需的。一种消融方法是对Apj-DTRGFP-Luc小鼠注射白喉毒素(DT)(下图E)。注射DT的Apj-DTRGFP-Luc小鼠中肿瘤生长显著受到抑制(下图F和G),肿瘤重量显著降低(下图H)。 GFP、DTR和PECAM的免疫染色证实,注射DT后肿瘤中的血管生长显著被抑制(下图I和J),但其他非肿瘤组织的正常器官中没有发现任何明显的血管密度下降或组织形态发生受损。 


图片9.png 

Figure 5. Generation and Characterization of Apj-DTRGFP-Luc Mouse Line. (E) Schematic figure showing experimental strategy. DT, diphtheria toxin. (F) Quantification of tumor volume (length 3 width2/2 [mm3]) at various times after tumor implantation. *p < 0.05. Data are mean ± SEM; n = 6. (G) Picture of tumors from Apj-DTRGFP-Luc mice treated with DT or PBS. (H) Quantification of tumor weight of two different groups as indicated. *p < 0.05. Data are mean ± SEM; n = 6. (I) Immunostaining for GFP, DTR, and PECAM on tumors collected from Apj-DTRGFP-Luc mouse treated with DT or PBS. (J) Quantification of vessel number per 633 field. *p < 0.05. Data are mean ± SEM; n = 6. Scale bars, 200 mm.

 

另一种消融Apj+细胞的方法是,用R26-DTA(条件性表达DTA)小鼠交配获得Apj-CreER; R26-GFP/DTA三阳性小鼠并注射他莫昔芬,在Apj+细胞中诱导Cre-loxP介导的DTA表达(下图A和B)。无他莫昔芬处理的对照组肿瘤体积升高;而他莫昔芬处理组,肿瘤体积没有增加(下图C)。Apj+细胞消融后,肿瘤体积和肿瘤重量均显著被抑制(下图D-F)。Apj-CreER; R26-GFP/DTA小鼠在他莫昔芬处理后,肿瘤中GFP+信号显著减少(下图G),PECAM +血管内皮细胞密度显著降低(下图H)。同样在其他非肿瘤组织的正常器官中没有发现任何明显的血管密度下降或组织形态发生受损。


图片10.png 

Figure 6. Genetic Ablation of Apj+ Vessels Significantly Reduced Tumor Growth. (A and B) Schematic figure showing experimental strategy (A) and working principle for CreER-induced DTA expression for cell death (B). (C) Quantification of tumor volume (length 3 width2/2 [mm3]) at various times after implantation. *p < 0.05. Data are mean ± SEM; n = 6. (D) Picture of tumors from Apj-CreER;R26-GFP/DTA mice treated with tamoxifen (+ Tam) or corn oil (no Tam). (E and F) Quantification of tumor volume (E) and tumor weight (F) of three different groups as indicated. *p < 0.05. Data are mean ± SEM; n = 6. (G) Whole-mount fluorescence view of GFP+ tumors. Inset is bright-field view. (H) Immunostaining for PECAM on tissue sections and quantification of their number per 633 field. *p < 0.05. Data are mean ± SEM; n = 6.

 

  • Apj拮抗剂F13A抑制肿瘤血管生成和生长

为进一步了解肿瘤血管中Apj活化的病理学意义,并评估其作为治疗靶标的潜力,用Apj特异性拮抗剂F13A来抑制Apelin-Apj系统。此前,F13A是否可用于抑制肿瘤生长尚未知。F13A丙氨酸(C-末端苯丙氨酸的代替物)与Apj的螺旋VI上的K268和Y264形成氢键相互作用(下图A和B),还参与配体和受体之间的其他疏水和极性相互作用。在小鼠荷瘤模型中F13A能显著延缓肿瘤生长(下图C和D),肿瘤体积和重量都得到显著减少(下图E-F)。更重要的是,F13A治疗的肿瘤中存在大的无血管区域(下图G)。F13A处理后肿瘤核心区域高度缺氧,且血管化的非缺氧区域显著减少(下图H)。



图片11.png 

Figure 7. Treatment of Apj Antagonist F13A Inhibits Tumor Angiogenesis and Growth. (A) Structural model of F13A-Apj complex. Green cartoon for the receptor Apj and yellow sticks for the peptide ligand F13A. This model is derived from the molecular dynamics model of Apelin-13 (AP13)-Apj complex on the basis of the crystal structure of Apj-AMG3054 (PDB: 5VBL). (B) Ligand-receptor binding interactions. F13A and Apj are labeled with red and black text, respectively. Magenta indicates F13A residue alanine (A13) that interacts with K268 and Y264 on Apj. Hydrogen-bonding interactions are indicated by black dashed lines. (C) Schematic figure showing experimental strategy. (D) Quantification of tumor volume (length 3 width2/2 [mm3]) at indicated time after implantation. Student’s t test was used to analyze differences, and values are shown as mean ± SEM; *p < 0.05; n = 8 for each time point. (E) Pictures of tumors from PBS- or F13A-treated mice. (F) Quantification of tumor weight in (E). *p < 0.05. Data are mean ± SEM; n = 8. (G) Immunostaining for PECAM on tumor sections shows reduced vessel density in F13A-treated mice compared with PBS control.

体外培养HUVEC细胞给予F13A处理后,管样结构显著减少(下图I和J),且细胞迁移能力受损(下图K和L)。此外,经过系统分析F13A和PBS处理的心脏样品,没有发现F13A对其他器官中的血管稳态没有任何不良副作用。总之,这些体内和体外数据证明F13A能减少肿瘤血管生成并抑制肿瘤生长。



图片12.png 

Figure 7. Treatment of Apj Antagonist F13A Inhibits Tumor Angiogenesis and Growth. (H) H&E staining, immunostaining for Hypoxyprobe on tumor sections shows thinner periphery and larger hypoxia core region and quantification of non-hypoxia region thickness. Data are shown as mean ± SEM; *p < 0.05; n = 8. (I) Tube formation analysis by HUVECs cultured on Matrigel. (J) Quantification of tube length per field. PBS-treated sample is set as 1. Data are shown as mean ± SEM; *p < 0.05; n = 4. (K) Migration assay by scratch on cultured HUVECs. (L) Quantification of migration distances at 6 and 24 hr after PBS or F13A treatment. Data are shown as means ± SEM; *p < 0.05; n = 4.

图片13.png 

本文亮点

  • Apj是病理性血管新生的细胞表面标志物,例如肿瘤血管新生Marker

  • 肿瘤血管中Apj的高表达受缺氧-VEGF信号调控

  • Apj+细胞可以被用作肿瘤的抗血管生成治疗的治疗靶标


 


你也可能感兴趣

Tamoxifen诱导Cre-ERT2小鼠 使用指南

Cre-ERT2在无Tamoxifen诱导的情况下,在细胞质内处于无活性状态;当Tamoxifen诱导后,Tamoxifen的代谢产物4-OHT(雌激素类似物)与ERT结合,可使Cre-ERT2进核发挥Cre重组酶活性。

查看
【小鼠大学问】基因工程小鼠的命名规则

常见的基因工程小鼠可以分为两种命名方式,包括基因定点修饰的小鼠命名,比如:敲除、敲入、点突变等等,和随机转基因的小鼠命名。

查看